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Abstract

We develop a deterministic mathematical model to describe reactivation of latent virus by chem-
ical inducers. This model is applied to the reactivation of latent KSHV in BCBL-1 cell cultures
with butyrate as the inducing agent. Parameters for the model are first estimated from known
properties of the exponentially growing, uninduced cell cultures. The model is then extended to
describe chemically induced KSHV reactivation in latently infected BCBL-1 cells. Additional
parameters that are necessary to describe induction are determined from fits to experimental
data from the literature. Our model provides good agreement with two independent sets of
experimental data.
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1 Introduction

Many viral pathogens establish latency and are dormant. The presence of inducers leads these pathogens to
reactivate and replicate, aiding their transmission and contributing to disease development. In addition, there
is increasing evidence in the literature for the importance of polymicrobial infections in which microorganisms
interact in a synergistic fashion, impacting both pathogenesis and maintenance of health. Among these, virus-
bacteria interactions have been described, including reactivation of latent virus by metabolic end products
of anaerobic bacteria. A shift in the balance of the flora often controlled by the intact immune system may
reflect significant morbidity particularly in the immune suppressed host. The relationships between viral
pathogens and their inducing agents have not previously been described mathematically. Therefore, to begin
to understand the relationship between pathogens and their inducing agents, particulary in a polymicrobial
environment, we have developed a mathematical model that describes the reactivation of latent herpes virus
by metabolic end products of anaerobic bacteria.

Herpes viruses are double-stranded DNA viruses. Currently, there are eight known herpes viruses that
infect humans. After primary infection, the virus remains latent in specific types of host cells that may be
different from the types of cells targeted for primary infection. Latent virus persists in the cell nucleus as
episomal DNA until it is reactivated, beginning a program of lytic replication and lysis, and leading to a new
(sometimes asymptomatic) round of infection and latency. Upon the reactivation, the viral DNA begins a
lytic program characterized by a temporal cascade of gene expression culminating in excretion of free virus
and cell lysis. The lytic program is typically described as three phases of gene expression: Immediate Early,
Early, and Late. During Immediate Early and Early phases infected cells produce viral proteins that are
necessary for viral DNA synthesis, which occurs at the end of the Early phase. During the Late phase of the
reproductive cycle the host cell is directed to make the structural proteins necessary for viral packaging.

The exact mechanisms by which latent virus becomes reactivated and begins lytic replication are not entirely
known. However, it has been established that inducing agents such as Tetradecanoyl Phorbol Acetate
(TPA), sodium butyrate, and other short chain fatty acids (SFAs) can induce lytic replication of Kaposi’s
Sarcoma-associated Herpes virus (KSHV) and Epstein-Barr virus (EBV) [14, 37, 38]. In addition, recent
experiments have shown that the spent media from gram negative bacteria cultures, such as P. Gingivalis
and P. Intermedia, which contains short chain fatty acids (e.g., iso-valeric, n-butyric acid, and propionic
acid), can also induce latent KSHV to begin lytic replication [29].

A mechanism for bacterial reactivation of latently infected cells has strong health implications for the oral
environment as well as the gut and GI tract, where there may be large numbers of gram negative bacteria in
the presence of latently-infected cells. Reactivation of latent herpes viruses are a major health concern for
immune-compromised individuals, such as those with AIDS. Understanding the role of anaerobic bacteria in
reactivation of latent herpes viruses may have important health consequences if there is similar reactivation
of latent episomal HIV by bacterial metabolic end products.

To our knowledge there has been no mathematical modeling treatment of viral reactivation at the cellular
level. Much of the mathematical modeling of herpes viruses has focused, understandably, on modeling at the
epidemiological level (e.g., [7, 18]). Recently, Wang et al., used HHV-6 infection as a stimulus for studying
cellular changes in the T cell immune system under pathological conditions [34]. Their study included data
from the literature, clinical data, and cell culture data. Their model agreed well with data, but focused on
the viral load and T cell response. Clearly there is a need and opportunity to understand viral latency and
reactivation, especially since this is a characteristic feature of herpes virus infection.

In this manuscript we report on a deterministic mathematical model that we have developed to describe
reactivation of latent virus by chemical inducers. In particular, we apply this model to the reactivation of
latent KSHV in BCBL-1 cell cultures with butyrate as the inducing agent. KSHV, also known as Human
Herpesvirus-8 (HHV-8), is a gamma herpes virus that is responsible for Kaposi’s Sarcoma tumor development
and other lymphoproliferative disorders such as Castleman’s disease and primary effusion lymphoma. KSHV
latently infects epithelial and lymphoid cells that are present in the oral environment and reactivation of
latent virus in B cells may play a role in the pathogenesis of Kaposi’s sarcoma [25]. BCBL-1 cells are an
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immortalized cell line derived from body-cavity-based lymphomas that are latently infected with multiple
copies of KSHV, but not Epstein-Barr virus (EBV) [28], providing a convenient vehicle for studies of viral
reactivation. We choose butyrate as the inducing agent since, as an SFA, it is similar to the metabolic
end products of gram negative bacteria, it is easily quantified, and its activity is well documented in the
experimental literature.

We first estimate parameters for our model from known properties of the exponentially growing, uninduced
cell cultures. We then extend the model to describe chemically induced KSHV reactivation in latently infected
BCBL-1 cells. Additional parameters that describe induction are determined from fits to experimental data
available in the literature. Our model exhibits good agreement with two independent sets of experimental
data.

The model presented here establishes a general framework for modeling the effect of other inducing agents
that act through histone-deacetylase (HDAC) inhibition, including other SFA’s produced by the metabolic
processes of gram negative bacteria. As such, it may also be applied to other latent virus systems that are
induced to replicate via HDAC inhibition, such as EBV, HIV, and HCMV.

2 Modeling Compartments

We describe the dynamics of the host cells and viral DNA copies using a set of ordinary differential equations
(ODEs). A schematic diagram of the ODE model compartments is shown in Figure 1 and the model
compartments are summarized in Table 1. Latent L and lytic R copies of viral DNA reside in the nuclei
of host cells. As mentioned above, there are multiple copies of episomal viral DNA in each BCBL-1 host
cell. We make the following “all or nothing” simplifying assumption: within a given host cell, nuclear viral
DNA copies are either all latent or all in a lytic replication program. Therefore, there are two types of host
cells, host cells HR with lytic virus only or host cells HL with latent virus only. In future work, we may
superimpose a probability distribution on the parameters to better approximate mixed conditions where a
host cell may contain both latent and lytic virus in varying levels. Such a modeling technique was successfully
used in cellular level HIV models to account for variable length (with uncertainty) pathways in [2]. In models
of this type the state variables are the expected values of concentrations (or of numbers of cells) resulting in
delay differential equation models embodying uncertainty. We do not pursue this level of refinement in the
initial model developed here.

Host cell death can occur as a result of natural aging, with individual rates dR and dL, viral lysis rate dI

[30], or the inducing agent rates δL(s) and δR(s). Host cells that die are added to a nonviable host cell
compartment N . During the Early Phase of the lytic program, productive replication of viral DNA takes
place in replication compartments [35]. The localization of the replication process allows for exponential-like
growth of viral DNA R, where the progeny of replicating virus become replication templates themselves
[16]. Capsid assembly occurs in the nucleus and nucleocapsid envelopment occurs at the nuclear membrane.
The intracellular viral DNA compartment VI represents viral DNA copies that are no longer targets for
replication and are available for encapsulation.

After envelopment, the virus is released as free virions VF . Experiments by Bechtel et al., indicate that free
KSHV virions produced by BCBL-1 cells fail to infect many cultured lymphoid cell lines [5]. Therefore, we
assume that free virions that are produced are not capable of reinfecting the host cells. We can also arrive
at this assumption by considering that, within the cultured cell line, there are always a small number of
host cells with spontaneously reactivated lytic virus that are producing free virions. If the free virus were
able to reinfect the BCBL-1 cells then the average number of viral copies per host cell would not be a stable
quantity. Since there is no indication that the average number of viral DNA copies in the cell line is changing
with time, we assume that free virions are not reinfecting the host cells.
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Figure 1: Schematic of the modeling compartments associated with latent virus host cells HL, lytic virus host
cells HR, and nonviable host cells N . Latent virus L reactivates to become lytic virus R, either spontaneously
or in response to an inducing agent s. Lytic virus R undergoes exponential growth until it passes to the
intracellular viral compartment VI where it is available for packaging and is released as free virions VF .

Compartment Symbol Units

Host cells (latent virus only) HL number of cells

Host cells (lytic virus only) HR number of cells

Nonviable cells N number of cells

Latent virus L DNA copies

Lytic Virus R DNA copies

Intracellular virus VI DNA copies

Free virus VF number of virions

Table 1: ODE Model Compartments.

3 Mathematical Model for the Uninduced Case

Host cell dynamics. Latently infected host cells HL are growing at a rate βLHL and have a natural death
rate dLHL, where βL > dL. As part of the lytic cycle, herpes viruses block the cell cycle in G0/G1 and block
cell-initiated apoptosis [17, 20, 36]. Therefore, host cells with lytic virus HR are expected to have much
smaller rates of cell replication βRHR and natural death dRHR than host cells with latent virus (βR ¿ βL

and dR ¿ dL). Although lytically infected host cells HR are expected to have a reduced death rate due to
viral inhibition of apoptosis, there is an additional mechanism for cell death due to the production of virus
and the resulting cell lysis. We model this viral-induced death rate as a function of the average amount
of intracellular virus that accumulates dI(V̄I)HR, where V̄I = VI/HR. Nonviable cells are in a process of
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disintegration into smaller fragments and leave the N compartment with a rate µN .

Experimental observations of uninduced cell cultures indicate that some fraction of host cells will, through
spontaneous reactivation, have lytic virus [8, 23, 27]. Therefore, we include terms for spontaneous reactivation
of latently infected cells with a rate constant α0. When herpes viruses establish latency in newly infected
cells they undergo a small lytic replication program using proteins imported in the viral capsid. Rather than
proceeding to encapsulation and lysis, the replicated copies of viral DNA then enter a latent state [16]. This
initial lytic infection that leads to latency is different from the lytic replication that occurs when latent virus
in cultured cells is induced into a lytic program and it is not clear whether virus that is reactivated from
latency can return to a latent state in these cultured cells. Therefore, we allow for the possibility that lytic
virus returns to a latent state with a rate ρR. Later we will present an argument that this term must be
zero in a cell culture with a stable average viral copy number. With these considerations in mind, we model
the host cell dynamics in the uninduced case by

dHL

dt
= (γL − α0) HL + ρHR

dHR

dt
= α0HL +

(
γR − ρ− dI(V̄I)

)
HR

dN

dt
= dLHL +

(
dR + dI(V̄I)

)
HR − µN ,

(3.1)

where γL = βL − dL and γR = βR − dR.

Viral dynamics. There are multiple copies of viral DNA in each latently infected host cell nucleus, with
an average L̄ per cell. Latent virus is maintained as circular episomal DNA in the host cell nucleus where it
is tethered to the host cell DNA and is copied each time the host cell DNA is replicated. Therefore we can
approximate the L compartment growth at a rate which is proportional to the host cell growth rate and the
average number of latent virus copies per host cell, L̄βLHL. We allow for the possibility that lytic virus R
is also copied during host cell replication, although as stated above, we expect the host cells with lytic virus
to be replicating at a much lower rate. This gives a similar growth rate of R̄βRHR for lytic virus.

Using the same reasoning, we assume that each dying host cell destroys a number of latent (lytic) virus
equal to the average number of latent (lytic) virus per host cell, as represented by the loss term L̄dLHL

(R̄dRHR and R̄dI(V̄I)HR). We assume that the intracellular viral DNA copies are not replicated with the
host cell, since they are not tethered to the host DNA, but are destroyed when the host cell dies at rates of
V̄IdI(V̄I)HR and V̄IdRHR. The reactivation and deactivation of latent and lytic virus follows in a manner
similar to the terms above. Therefore, the uninduced model for the viral DNA dynamics is given by the set
of equations

dL

dt
= γLL̄HL − α0L̄HL + ρR̄HR

dR

dt
= (κ− q)R + α0L̄HL +

(
γR − dI(V̄I)

)
HRR̄− ρHRR̄

dVI

dt
= qR− pVI − dRHRV̄I − dI(V̄I)HRV̄I

dVF

dt
= pVI ,

(3.2)

where κR is the replication rate for lytic viral DNA, qR is the rate at which lytic virus moves to the
intracellular compartment, and pVI is the rate at which the intracellular DNA is packaged and excreted as
free virions VF .
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Uninduced cell and viral dynamics. Using L̄ = L/HL, R̄ = R/HR and V̄I = VI/HR, we can write the
full uninduced model as

dHL

dt
= (γL − α0)HL + ρHR

dHR

dt
= α0HL +

(
γR − dI(V̄I)− ρ

)
HR

dN

dt
= dLHL +

(
dR + dI(V̄I)

)
HR − µN

dL

dt
= (γL − α0)L + ρR

dR

dt
=

(
κ− q + γR − dI(V̄I)− ρ

)
R + α0L

dVI

dt
= qR− (

p + dR + dI(V̄I)
)
VI .

(3.3)

The solution for VF is easily obtained from the above solutions and can be written as

VF (t) = VF0 +
∫ t

t0

pVI(u)du. (3.4)

4 Mathematical Model for the Induced Case

We next modify the uninduced model (3.3) to include the actions of an inducing agent s. The main affect of
the inducing agent is to increase the rate at which latent virus becomes reactivated (α(s) ≥ α0). In addition,
inducing agents such as butyrate and valproate may also cause host cell death through activation of host cell
genes [6, 22, 37]. We represent the induced cell death rates by δR(s)HR and δL(s)HL, where δL(s) and δR(s)
are functions of the butyrate concentration s. With these additional terms the equations for the induced
case become

dHL

dt
= (γL − α(s)− δL(s)) HL + ρHR

dHR

dt
=

(
γR − δR(s)− dI(V̄I)

)
HR + α(s)HL − ρHR

dN

dt
=

(
dL + δL(s))HL + (dR + δR(s) + dI(V̄I)

)
HR

dL

dt
= (γL − α(s)− δL(s)) L + ρR

dR

dt
=

(
κ− q + γR − δR(s)− dI(V̄I)

)
R + α(s)L− ρR

dVI

dt
= qR− (

p + dR + dI(V̄I) + δR(s)
)
VI

(4.5)

and

VF (t) = VF0 +
∫ t

t0

pVI(u)du. (4.6)
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5 Parameter Estimation

Some of the parameters in the uninduced model (3.3) can be estimated from physiological considerations.
The parameter q is the rate constant for movement of lytically replicating virus from the R compartment to
the intracellular compartment VI . We estimate that the rate at which lytic virus leaves the R compartment
is inversely proportional to the time that the lytic virus spends in the lytic program of gene expression and
replication. Therefore, we set q = 1/T , where T is the approximate time it takes to complete the lytic
program (approximately 48 hours).

Since the lytic virus causes cell cycle arrest and inhibits apoptosis, we make the simplifying assumptions that,
for lytically infected host cells HR, the growth rate constant and natural death rate constant both vanish,
i.e., γR = dR = 0. Although lytically infected host cells HR are expected to have a reduced rate of death
due to viral inhibition of apoptosis, there is an additional mechanism for cell death due to the production
of virus and the resulting cell lysis. We have modeled the rate for this viral-induced death as a function of
the average amount of intracellular virus that accumulates which is denoted by dI(V̄I), where V̄I = VI/HR.
For the sake of simplicity and in the interest of obtaining parameter estimates, we assume dI to be a linear
function of the average number of intracellular copies per lytically infected host cell, i.e., dI(V̄I) = cV̄I .

Implications of the ρ term on cell culture stability. We expect that the average number of latent
copies of viral DNA per latently infected host cell is a constant that is characteristic of the particular cell
line; otherwise the cell properties would be different from one experiment to the next. Therefore, L/HL = L̄
is a constant, which we designate with the variable n, and dL/dt = n(dHL/dt). Using these conditions and
the first and fourth equations in (3.3), we find that ρ(R − nHR) = 0. This condition can be met in two
ways, either ρ = 0 or R = nHR. The former condition requires that there is no reversion of lytically infected
host cells back to latency. The latter condition implies that dR/dt = n(dHR/dt) and, from the second and
fifth equations in (3.3), this condition would require that κ − q = 0. Since κR is the rate of replication of
lytic virus and qR is the rate at which the lytic virus is moving to the intracellular virus compartment, the
condition κ − q = 0 implies that there can be no net accumulation of replicating virus. If κ − q = 0 there
will be no exponential growth of viral DNA copies. Such a condition is contrary to current knowledge of the
lytic cycle for KSHV [16].

In summary, if the condition L̄ = n is to be maintained in the uninduced BCBL-1 cell cultures then either
there can be no reversion of virus back to latency (ρ = 0) or the rate at which the lytic viral DNA is
being copied must be equal to the rate at which viral DNA copies are being added to the VI compartment
(κ − q = 0). The latter condition implies that copies of replicated viral DNA can not be templates for
replication, themselves, which contradicts the current understanding of the lytic replication. Therefore, we
set ρ = 0 in this model. It should be noted that these conditions only apply in the case of stable, latently
infected cell lines such as BCBL-1 cells and do not apply to acutely infected cells where lytic virus is known
to revert to latency.

Properties of cell lines. Other parameters in the uninduced model (3.3) can be estimated from known
properties of the uninduced cell cultures. As we have noted, BCBL-1 cells are an immortalized cell line
derived from body-cavity-based lymphomas that are latently infected with multiple copies of KSHV [28].
Exponentially growing cells are maintained in a medium consisting of growth nutrients and antibiotics to
prevent bacterial contamination. Growing cells are periodically split to prevent contact growth inhibition
and to provide fresh nutrients. We expect that, under constant growth and maintenance conditions, certain
average properties of the cell line will be unchanging in time. Some of the parameters for the uninduced
model can be estimated from these constants.

Table 2 summarizes these constants, along with ranges of values reported in the experimental literature. One
such constant is the fraction of host cells with spontaneously reactivated virus as. Experimental observations
of this quantity vary from 1-8%. Differences in observed values for as may be due to the different methods
used to detect lytic virus as well as differences in the growth and maintenance conditions of the cell lines.
Another constant is the fraction of nonviable cells Nr in the cell culture, with values reported from 8-20%.
Variability in the observed fraction of nonviable cells Nr is, also, most likely a result of differences in cell
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line growth and maintenance conditions as well as differences in measurement techniques (e.g., dye exclusion
versus dye inclusion identification techniques and haemocytometer versus cell sorting counting techniques).
BCBL-1 cells have a doubling time Dp of approximately 48 to 85 hours, which will also be dependent upon
growth and maintenance conditions. The model parameter n, which represents the average number of latent
virus copies per uninduced host cell is a constant of the cell line, independent of growth and maintenance
conditions. This quantity is not measured directly, but rather a related quantity nT , representing the average
number of copies of viral DNA per cell (or average cell-associated viral DNA, i.e., L + R + VI), is measured.
Values of nT ranging from 50 to 70, dependent upon growth and maintenance conditions, have been reported
in the literature.

In Table 2 the uninduced cell line constants are specified in terms of the ODE model compartments. The
subscript t → ∞ indicates that we expect these quantities to be constants in an equilibrated average sense
under conditions of constant growth and maintenance. In addition to the above observed cell line constants,
we also expect that the average number of lytic RA and intracellular VIA DNA copies per host cell to be
constant though we have no experimental measurements for these constants.

Constant Description Symbol Value Units Model Formulation

Fraction of lytic host cells as 0.01-0.08 - as =
(

HR

HL + HR + N

)

t→∞
[13, 26, 33]

Fraction of nonviable host cells Nr 0.08-0.2 - Nr =
(

N

HL + HR + N

)

t→∞
[37, 38]

Host cell doubling time Dp 48-85 hr 2 =
(HL + HR + N)t=Dp

(HL + HR + N)t=0

[24, 33]

Average copies of viral DNA per cell nT 50-70 - nT =
(

L + R + VI

HL + HR + N

)

t→∞
[23, 27]

Average number of lytic DNA per cell RA - -
(

R

HR

)

t→∞

Average number of intracellular VIA - -
(

VI

HR

)

t→∞
DNA per cell

Table 2: Observed cell line constants.
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From the constants and relationships in Table 2, the uninduced equations (3.3), and the above estimates for
q, dR, γR, and dI(V̄I) = cV̄I , we obtain the following parameter values in terms of the unknown parameters
γL, µ,

dL =
ln(2)/Dp + µNr

1− as −Nr
− γL

c =
ln(2)

asVIADp
(Nr − 1) +

γL

asVIA
(1− as −Nr)

α0 = γL − ln(2)
Dp

p =
RA

TVIA
− (1− as −Nr)

as

(
γL − ln(2)

Dp

)

κ =
(

γL − ln(2)/Dp

asRA

)
(RA −NrRA − nT + asVIA) +

1
T

n =
nT − as(RA + VIA)

1− as −Nr
.

(5.7)

6 Numerical Results

In this section, we compare our reactivation model to two sets of experimental data from the literature that
describe reactivation of latent virus in BCBL-1 cells. In particular, we compare our model to longitudi-
nal cell viability data following chemical induction. In one case, Zoeteweij, et al., [38] use n-butyric acid
(CH3CH2CH2COOH) as the inducing agent, while in the other case, Yu, et al., [37] use Na n-butyrate
(CH3CH2CH2COONa) as the inducing agent. Despite the differences in molecular formulas, we expect the
two inducers to behave roughly the same in solution after dissociation of the H+ and Na+ ions. In particular,
for cell viability data, Sakurazawa, et al., have shown that n-butyric acid and Na n-butyrate are cytotoxic
at approximately the same concentrations [31].

6.1 Parameter values

In Section 5 we estimated values for some parameters from physiological considerations and showed that
other model parameters could be estimated from a few free parameters and experimental observations of
cell-line constants (5.7). The fraction of nonviable cells Nr (in the uninduced case) is the only value that
we can determine directly from the data of Zoeteweij, et al., and Yu, et al., obtaining approximate values of
8% and 17%, respectively. For the other constants we choose values from within the ranges reported in the
literature (Table 2): as = 0.017, Dp = 85 hr. In addition, we choose nT = 70 and 63 for modeling the data
of Zoeteweij, et al., and Yu, et al.., respectively. In this way we have n = 74 for both sets of data. We choose
the following values for the free parameters and unknown constants : γL = 8.4× 10−3 hr−1, µ = 2.1× 10−4

hr−1, RA = 89, and VIA = 89.

In Table 3 we tabulate the parameter values used in simulations corresponding to the above choices of
experimental constants and free parameters.
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Parameter Symbol Zoeteweij, et al., data Yu, et al., data Units

Net growth rate constants for host cells γL 8.4× 10−3 8.4× 10−3 hr−1

γR 0 0 hr−1

Natural death rate constant for host cells dL 6.49× 10−4 1.70× 10−4 hr−1

dR 0 0 hr−1

Spontaneous reactivation rate constant α0 2.45× 10−4 2.45× 10−4 hr−1

for latently infected host cells

Spontaneous deactivation rate constant ρ 0 0 hr−1

for lytically infected host cells

Rate constant for cell death due to viral lysis c 5.48× 10−5 3.99× 10−5 hr−1

Rate constant for nonviable cell degradation µ 2.1× 10−4 2.1× 10−4 hr−1

Rate constant for synthesis of viral DNA κ 2.30× 10−2 2.28× 10−2 hr−1

Rate constant for sequestration of q 2.08× 10−2 2.08× 10−2 hr−1

viral DNA for encapsulation

Rate constant for packaging and p 7.80× 10−3 9.13× 10−3 hr−1

secretion of virions

Average number of copies of n 74 74 -
viral DNA per latent host cells

Induced reactivation rate constant αc 8.72× 10−1 1.85× 10−1 hr−1

Induced death rate constant δc 5.33× 10−3 6.91× 10−3 hr−1

Induced death rate δL(s) 0 0 hr−1

Table 3: Parameters from the uninduced model (3.3) are calculated from (5.7) with constants as = 0.017,
VIA = 89, RA = 89, Nr = 0.08 or 0.17, Dp = 85 hr, and nT = 70 or 63, and with free parameters
γL = 8.4× 10−3 hr−1 and µ = 2.1× 10−4 hr−1. Parameters from the induced model (4.5) are obtained from
fits to experimental data.

6.2 Uninduced Case

We first present results of a simulation for the uninduced case modeled by system (3.3). Parameter values
used for the simulation are shown in Table 3. The initial condition for all compartments is zero, except
for compartments HL and L, which have initial conditions of 1.0× 106 and 7.4× 107. Figure 2 depicts the
fraction of nonviable cells N/(HL + HR + N) (dashed lines) and the fraction of spontaneously reactivated
cells HR/(HL + HR + N) from simulations using equations (3.3) and the parameter values in Table 3. In
Fig. 2 we can see that, by 1000 hours, the fraction of nonviable cells and the fraction of spontaneously
reactivated cells asymptotically reach the specified equilibrium values of as = 0.017 and Nr = 0.08 for the
data of Zoeteweij, et al., and as = 0.017 and Nr = 0.17 for the data of Yu, et al. By equilibrium we mean
that, although the cell culture is growing exponentially, certain characteristic properties related to the ratios
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of model compartments eventually become constants (see Table 2).
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Figure 2: Uninduced simulations using equations (3.3) and parameters from Table 3 for the data of a) Zoeteweij, et
al., and b) Yu, et al. Solid lines plot the percentage of cells that are spontaneously reactivated HR/(HL + HR + N),
while dashed lines plot the percentage of cells that are nonviable cells N/(HL + HR + N).

In Fig. 3 we can see a similar equilibration of the average number of lytic and intracellular DNA copies
per lytically infected host cell, R/HR and VI/HR, respectively. In Fig. 3 we can see that, by 1000 hours,
the quantities R/HR an VI/HR have reach the specified equilibrium values of RA = 89 and VIA = 89,
respectively (see Table 2).
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Figure 3: Uninduced simulations using equations (3.3) and parameters from Table 3 for the data of a) Zoeteweij,
et al., and b) Yu, et al. The plots show the average number of lytic viral DNA copies R/HR (dashed line) and the
average number of intracellular viral DNA copies VI/HR (solid line) per lytically infected host cell. Both quantities
start with an initial condition of zero, but the quantity R/HR grows quite rapidly, giving the appearance of having
a nonzero starting value for these plot limits.

The equilibrated simulations for the uninduced model approximate the properties of the uninduced cell
cultures that are subsequently used in induction experiments and provide initial conditions for simulation of
the induced equations (4.5).
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6.3 Induced Case

Next we report on simulations for the induced equations (4.5). In the case of those parameters that are
common to both the uninduced and induced models we use the same values as in the previous simulation
(Table 3). Initial conditions for the induced model are obtained from the simulations of the uninduced
model at t = 2400 hr. Not only is the inducing agent capable of reactivating the latent virus, but it can
also activate host cell genes that may lead to apoptosis. We make a simplifying assumption that activation
of host cell genes would most likely occur in conjunction with reactivation of latent virus. In other words,
we assume that inducing mechanisms that would initiate cell apoptosis would also lead to viral reactivation
and, therefore, assume that there will be no chemically induced cell death for latently infected host cells
(i.e., δL = 0).

The exact functional forms of the rates for induced lytic cell death δR(s) and induced reactivation of latent
cells α(s) are not known. We first choose simple affine functions α(s) = α0 + αcs and δR(s) = δcs and find
values for the function parameters by fitting longitudinal experimental data on BCBL-1 cell viability from
Zoeteweij, et al., [38] and Yu, et al., [37], separately. The parameter fitting is accomplished by forming an
ordinary least squares inverse problem as described in the Appendix and then estimating the parameters
using a Nelder-Mead algorithm. Standard errors are calculated, the details of which are also given in the
Appendix. In the case of the affine functions, estimated values for the parameters are insensitive to the
initial values that seed the optimization algorithm.

Figure 4 compares cell viability predicted from simulations with data from both experimental groups, using
the estimated parameters for δc and αc obtained by the ordinary least squares estimation techniques. Es-
timated parameter values are reported in Table 3 and 4. Some of the model parameters differ between the
two groups because of differences in uninduced cell viability for the two groups (92% versus 83%). From
Fig. 4 it can be seen that the simulations for the induced model qualitatively match the behavior of the
experimental data.
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Figure 4: Comparison of cell viability measurements with simulations using induced equations (4.5) and fitted
parameters for linear functions α(s) and δR(s): a) Zoeteweij, et al., circles 0 mM, squares 0.03 mM, triangles 0.3
mM, and diamonds 3 mM, αc = 0.872, δc = 5.33× 10−3 and b) Yu, et al., circles 0 mM, triangles 0.3 mM, stars 1.5
mM, and diamonds 3 mM, αc = 0.185, δc = 6.91× 10−3.
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In Fig. 5 we plot the number of free virions as a function of time for different butyrate concentrations. Yu,
et al., [37] observe in their experiments that high concentrations of butyrate (1.5 and 3 mM) greatly increase
lytic activity, but also significantly increase cell death. The end result is that, even after 5 days, very few
free virions are produced because of massive amounts of cell death before the end of the lytic program. This
is contrasted by observations at smaller concentrations of butyrate (≤ 0.3 mM), where much less cell death
is seen and there is significant secretion of free virions. In Fig. 5 it can be seen that there is approximately
a three-fold increase in free virion produced at 0.3 mM concentration of butyrate as compared to the 3 mM
concentration.
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Figure 5: The results of simulations of free virions produced using induced equations (4.5) and parameters for linear
functions α(s) and δR(s) fitted to experimental data from a) Zoeteweij, et al., and b) Yu, et al.

Table 4 summarizes the estimated parameters, standard errors, and confidence intervals obtained from fitting
the induced equations (4.5) with the parameter functions α(s) = α0 + αcs and δR(s) = δcs to both sets of
data. Table 4 shows that the estimated parameter values for both groups are within an order of magnitude
of each other. Differences between the parameter values may reflect differences in the cell growth and
maintenance conditions or differences in experimental measurement techniques. Even in the uninduced case,
there is a difference in the cell viability for both groups, with Nr = 0.08 for the data of Zoeteweij, et al., and
Nr = 0.17 for the data of Yu, et al. In addition, Zoeteweij, et al., measure cell viability using Dead Red
staining and flow cytometry, while Yu, et al., measure cell viability with trypan blue staining and counting
on a haemocytometer. In Table 4, it can also be seen that the standard errors for the reactivation rate
constants αc are at least an order of magnitude less than the parameter values. However, the standard
errors for the induced death rate constants δc are the same order of magnitude as the parameter values,
providing us with less confidence in values obtained for δc.
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Data Parameter Estimated Value Standard Error Confidence Interval

Zoeteweij, et al.
δc 5.33× 10−3 3.91× 10−3 [−3.11× 10−3, 1.38× 10−2]
αc 8.72× 10−1 1.26× 10−2 [8.45× 10−1, 8.99× 10−1]

Yu, et al.
δc 6.91× 10−3 3.70× 10−3 [−1.03× 10−3, 1.48× 10−2]
αc 1.85× 10−1 1.11× 10−2 [1.61× 10−1, 2.09× 10−1]

Table 4: Estimated parameter values, standard errors, and confidence intervals

7 Discussion

In other simulations, we used different functional forms for α(s) and δR(s), including Michaelis-Menton and
sigmoid functions, but we found that the fits of the induced equations to cell viability data were relatively
insensitive to more complicated functional forms (data not shown) and that reasonable fits to cell viability
data were obtained by assuming simple linear functions. However, with more data, especially with data for
viral DNA compartments, we expect to be able to determine optimal functional forms for α(s) and δR(s),
for example, combinations of linear, Michaelis-Menton, and sigmoid functions. Alternatively, instead of
fixing the functional form of α(s) and δR(s) a priori in parametric form, we could estimate the shape of the
functional form itself using approximation by piece-wise linear splines or other approximations as has been
successfully done in other problems in, for example, [1, 3].

Even though this preliminary model yields good qualitative agreement with cell viability data, additional
experimental data is needed to compare model predictions to other measurable quantities of interest, such
as cell-associated DNA (L + R + VI) and free virions (VF ). Additional data would also help to determine
the free parameters γL and µ, as well as the unknown constants RA and VIA. In the case of RA and VIA,
parameter sensitivity tests show that the optimal parameter values δc and αc are relatively insensitive to
variations in RA or VIA, since varying RA or VIA by ± 5% produced 3% or less variation in the optimized
parameter values.

Instead of a single viral compartment R to quantify copies of viral DNA in the lytic program, we could
modify the model to describe Immediate Early, Early, and Late gene expression (RNA), represented by
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compartments R1, R2, and R3 in the following equations for an induced model

dHL

dt
= (γL − α(s)− δL(s))HL + ρHR

dHR

dt
=

(
γR − δR(s)− dI(V̄I)− ρ

)
HR + α(s)HL

dN

dt
=

(
dL + δL(s))HL + (dR + δR(s) + dI(V̄I)

)
HR − µN

dL

dt
= (γL − α(s)− δL(s))L + ρ(R1 + R2 + R3)

dR1

dt
=

(
γR − q1 − δR(s)− dI(V̄I)− ρ

)
R1 + α(s)L

dR2

dt
=

(
κ + γR − q2 − δR(s)− dI(V̄I)− ρ

)
R2 + q1R1

dR3

dt
=

(
γR − q − δR(s)− dI(V̄I)− ρ

)
R3 + q2R2

dVI

dt
= qR3 −

(
p + dR + dI(V̄I) + δR(s)

)
VI

(7.8)

and VF (t) = VF0 +
∫ t

t0

pVI(u)du.

The three parameters q1, q2, and q3 represent the rate at which viral DNA moves from one stage of the lytic
program to the next. These parameters can be estimated as 1/T1, 1/T2, and 1/T3, respectively, where T1,
T2, and T3 are the approximate times for each stage of the lytic program. Corresponding parameters in this
proposed model and (4.5) would not necessarily represent the same quantities.

By having model compartments that quantify RNA production or promoter activity from genes representative
of each stage of the lytic cycle, we can hope to predict viral reactivation in more detail and compare
to experimental gene expression data. For example, ORF50, vIL6, K8.1 could be representative of the
Immediate Early, Early, and Late stages, respectively. A single compartment L can represent latent gene
expression, primarily ORF73 expression.

There may be underlying biological delays, due to the ordered cascade of gene expression that makes up the
lytic program, that are not captured with the model (4.5). A model such as (7.8) in which we rewrite the
single R compartment as three compartments R1, R2, and R3 representing the Immediate Early, Early, and
Late phases of the lytic program might be expected to more closely capture the biological delays inherent in
the lytic program of system.

8 Conclusion

We have developed a preliminary deterministic mathematical model to describe reactivation of latent virus
by chemical inducers. In particular, we apply this model to the reactivation of latent KSHV in BCBL-1 cell
cultures with butyrate as the inducing agent. We first estimate parameters for our uninduced model from
physiological considerations and known properties of these exponentially growing, uninduced cell cultures.
We then extend the model to describe chemically induced KSHV reactivation in latently infected BCBL-1
cells. Additional parameters that describe induction are determined from fits to experimental data available
in the literature. Our model provides good agreement with two independent sets of experimental data.
While this preliminary model yields good qualitative agreement with cell viability data for KSHV induced
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by butyrate, it also strongly suggests the need for further experiments designed explicitly to support model
development and validation in providing not only more but also additional types of longitudinal data.

This model exploits the polymicrobial nature of reactivation by focusing on chemical inducers that utilize the
same mechanisms as gram negative anaerobic bacteria. Among viruses there can be interactions that result
in reactivation as well. For example, recent experiments have shown that KSHV enhances HIV replication
and reactivation [9, 11] and that KSHV ORF50 (lytic) gene products increase in vitro cell susceptibility
to human immunodeficiency virus type 1 infection [10]. This evidence for the synergistic interactions of
KSHV and HIV highlights the importance of further model development and application to polymicrobial
environments.

Application of the type of model we have developed here to other latent viruses could provide information
about the similarities and differences among latent virus systems and could define the relationship of these
organisms to their inducers. For example, like KSHV, many latent viruses are induced to replication via
HDAC inhibition and are responsive to agents like sodium butyrate. These include EBV, HCMV, HSV,
HIV, Adenovirus, HPV, and HTLV1. The model with appropriate variations could potentially be applied
to any of these viruses. Further, the use of this and future models with other inducers may also provide
extremely valuable clinical information about induction mechanisms.

9 Appendix

In this appendix we discuss the asymptotic theory used to compute the standard errors and confidence
intervals in Table 4 of Section 6.3. We first give a general summary of the theory.

We assume N∗ scalar longitudinal/inducer level observations (time/inducer series of numbers or ratios of
numbers of cells as described below) are represented by the statistical model

Yj ≡ fj(θ0) + εj , j = 1, 2, . . . N∗, (9.9)

where fj(θ0) is the model for the observations in terms of the state variables and θ0 ∈ Rm is a “set” of
theoretical “true” parameter values (assumed to exist in a standard statistical approach). We assume for
our statistical model of the observation or measurement process (9.9) that the errors εj , j = 1, 2, . . . , N∗,
are independent identically distributed (i.i.d.) random variables with mean E[εj ] = 0 and constant variance
var[εj ] = σ2

0 , where of course σ2
0 is unknown (standard residual plots with the data used in our simulation

suggested this assumption of constant variance). We then have that the observations Yj are i.i.d. with mean
E[Yj ] = fj(θ0) and variance var[Yj ] = σ2

0 .

We consider estimation of parameters using an ordinary least squares (OLS) approach. Thus we seek to use
data {yj} for the observation process {Yj} with the model to seek a value θ̂ that minimizes

J(θ) =
N∗∑

j=1

|yj − fj(θ)|2. (9.10)

Since Yj is a random variable, we have that the estimator θ̂OLS is also a random variable with a distribution
called the sampling distribution. Knowledge of this sampling distribution provides uncertainty information
(e.g., standard errors) for the numerical values of θ̂ obtained using a specific data set {yj} (i.e., a realization
of {Yj}) when minimizing J(θ).

Under reasonable assumptions on smoothness and regularity (the smoothness requirements for model so-
lutions are readily verified using continuous dependence results for ordinary differential equations in our
example; the regularity requirements involve, among others, conditions on how the observations are taken as
sample size increases, i.e., N∗ →∞), the standard nonlinear regression approximation theory ([15], [19], [21],
and Chapter 12 of [32]) for asymptotic (as N∗ → ∞) distributions can be invoked. This theory yields that
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the sampling distribution θ̂(Y ) for the estimate θ̂, where Y = {Yj}N∗
j=1, is approximately a m-multivariate

Gaussian with mean E[θ̂(Y )] and covariance matrix cov[θ̂(Y )] = Σ0 = σ2
0 [χT (θ0)χ(θ0)]−1. Here χ(θ̂) = Fθ(θ)

is the N∗ ×m sensitivity matrix with elements

χjk(θ) =
∂fj(θ)
∂θk

and Fθ(θ) ≡ (f1θ(θ), . . . , fN∗θ(θ))T .

That is, for N∗ large, the sampling distribution approximately satisfies

θ̂OLS(Y ) ∼ Nm(θ0, σ
2
0 [χT (θ0)χ(θ0)]−1) := Nm(θ0, Σ0). (9.11)

The elements of the matrix χ = (χjk) can be estimated using the forward difference

χjk(θ) =
∂fj(θ)
∂θk

≈ fj(θ + hk)− fj(θ)
hk

,

where hk is an m-vector with nonzero entry in only the kth component, or using sensitivity equations (see
[4] and the references therein). For our efforts here we chose the sensitivity equation approach as explained
below. Since θ0, σ0 are not known, we must approximate them in Σ0 = σ2

0 [χT (θ0)χ(θ0)]−1. For this we
follow standard practice and use the approximation

Σ0 ≈ Σ(θ̂) = σ̂2[χT (θ̂)χ(θ̂)]−1

where θ̂ is the parameter estimate obtained, and the approximation σ̂2 to σ2
0 is given by

σ2
0 ≈ σ̂2 =

1
N∗ −m

N∗∑

j=1

|yj − fj(θ̂)|2.

Standard errors to be used in confidence interval calculations are thus given by SEk(θ̂) =
√

Σkk(θ̂), k =
1, 2, . . . ,m (see [12]).

In the induced case example of Section 6.3, we consider the parametric functional forms δR(s) = dcs and
α(s) = αcs + α0. If we let x = (HL,HR, N, L, R, VI , VF )T and denote θ = (δc, αc), then the differential
equations in the induced case can be written in a general form

ẋ = g(t, x, s, θ) (9.12)
x(0) = x0,

where g : R+×Rn∗ ×R+×Rm → Rn∗ for n∗ = 7, m = 2, and x0 = (HL0,HR0, N0, L0, R0, VI0, VF0)T . Since
the experimental data are given in percentage of viable cells, we define the outputs of the model

f(t, s, θ) =
[
Vtotal(t, s, θ)−N(t, s, θ)

Vtotal(t, s, θ)

]
, t, s ≥ 0,

where Vtotal = HL +HR +N . In each parameter fit, we use data that is longitudinal (taken at tk) and across
several levels si of inducer. This is indexed by τj = (tk, si) for k = 1, . . . , K, i = 1, . . . , I, and observations
yj for the model values fj(θ) = f(tk, si, θ), j = 1, . . . , N∗ = KI. Then, we construct the OLS estimator by
minimizing the cost criterion (9.10) where {yj} denotes the experimental data (in the data of Section 6.3 we
had N∗ = 15 or 16 resulting from K = 4 and I = 4 – see Figure 4). For the optimization in θ we used the
Nelder-Mead algorithm.

To compute the covariance matrix Σ we need the sensitivity matrix Fθ. That is, χ(θ̂) =
∂F

∂θ
(θ̂). From the

outputs defined in (9.12), it suffices to have the sensitivities
∂x

∂θ
. To compute these we used the sensitivity

equation method which involves solving the n∗ ×m matrix variational differential equation

d

dt

(
∂x

∂θ

)
=

∂g

∂x

∂x

∂θ
+

∂g

∂θ
, (9.13)
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where the matrix coefficient and the forcing function in this equation are evaluated along solutions of the
system equation (9.12). Note that this variational equation can be solved simultaneously (see [4] for details)
with the system equation (9.12).

Finally, in order to compute the confidence intervals (at the 100(1− c)% level) for the estimated parameters
in our example, we define the confidence level parameters associated with the estimated parameters so that

P (θ̂k − tc/2SEk(θ̂) < θk < θ̂k + tc/2SEk(θ̂)) = 1− c, (9.14)

where c ∈ [0, 1], and tc/2 ∈ R+. For a given c value (small, say c = .05 for 95% confidence intervals), the
critical value tc/2 is computed from the Student’s t distribution tN

∗−m with N∗ − m degrees of freedom
since for each of the data sets available to us we have N∗ is less than 30. The value of tc/2 is determined by
P (T ≥ tc/2) = c/2 where T ∼ tN

∗−m.
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